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A semi-implicit operator is derived for the Hall term that, when implemented in the MHD 
equations, allows time steps comparable to those normally used in semi-implicit MHD 
computations. The operator is fourth order in the direction of the magnetic field and is most 
accurate when used in a split time step algorithm. The effects of the semi-implicit treatment 
on linear waves in a cylinder are shown both through a detailed analysis and numerical tests. 
The effectiveness of the algorithm is also demonstrated with a nonlinear computation of a 
tokamak tearing instability. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The modification of the magnetohydrodynamic (MHD) equations due to the 
Hall effect can be important in many applications. In present day reversed-field 
pinch (RFP) experiments the Hall term can become comparable to the velocity 
term in Ohm’s law. The Hall term is also important in edge regions having sharp 
gradients and low density. In field-reversed configuration (FRC) experiments some 
theoretical explanations for the absence of tilt instabilities consider rotation to be 
a stabilizing effect [ 11. In FRCs, however, a large contribution to rotation comes 
from the diamagnetic drift which appears only with the Hall effect. Explicit schemes 
for 3-dimensional time-dependent computations including the Hall effect are com- 
plicated by a very restrictive stability limit on the time step. The same time step 
limit also arises in quasineutral hybrid (particle ions, fluid electrons) computations 
[2, 31. Implicit methods do not have such a time step restriction, but are difficult 
to implement due to the coupling of all the components in the induction equation. 

In this paper we describe how to use a semi-implicit method to obtain an 
unconditionally stable method, with respect to the Hall term, without degrading 
the accuracy of the computation for time steps appropriate for resistive MHD 
computations. The method is similar to the semi-implicit MHD [4, 51 method, 
which is used to eliminate the AlfvCn Courant-Friedrichs-Lewy (CFL) condition. 
In order to stabilize the Hall term, the semi-implicit operator acts on the magnetic 
field advance. The correct choice of operator is found to be essential in order to 
maintain accuracy. 
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2. SEMI-IMPLICIT MODEL 

The compressible resistive MHD equations with the Hall term may be written 

--&(J~B-VP,)]--$rl~, 
E, A 

p(;+v.vv)=JxB-VI’, 

ap 
at= -v.VP-yPV.v, 

ap - = -v . (pv), at 

(1) 

(2) 

J=VxB, (5) 

where v is the velocity, B is the magnetic field, J is the current density, P is the 
plasma pressure, P, is the electron component of the plasma pressure, p is the 
density, and q is the resistivity. The equations have been written in dimensionless 
variables with B = B’/B,, J = J’(4nL/B,c), x = xl/L, t = fITA, p = p’/p,,, P = 
P’(47r/Bi), q = ‘I’/?~, and S= rRfrA. The primed variables are the physical 
quantities and the unprimed are in dimensionless units. The Alfvtn transit time is 
defined by rA = L/VA, where VA is the AlfvCn speed, VA = Bo/&; CO,i is the ion- 
cyclotron frequency, W,i = (qB&,c); rR is the resistive decay time, TV = 

(47rL*/~,c*); y is the ratio of specific heats; B,, po, I]~, and L are convenient 
normalizing values. 

The significance of the Hall term is determined by the magnitude of (0~~7~)~ ‘. 

This term is large in regions with low densities or short scale lengths. For example, 
in the ZT-40M RFP [6] with a density of 2 x lOI cme3 and a minor radius of 
25 cm, this factor is approximately 0.3 and is too large to neglect. 

In order to examine the effect of the Hall term on the numerical stability of time- 
dependent computations, we consider the case in which (oCi zA) -’ is very large and 
drop the velocity term from the induction equation, Eq. (1). We also neglect the 
electron pressure gradient. Then the induction equation decouples from the other 
MHD equations. To derive the form of the semi-implicit operator, we linearize 
Eq. (1) about a uniform density plasma in a uniform magnetic field, B,, to obtain 

ah -= -- 
at ’ Vx(JlxBo). 

oci7A 

(6) 

Differentiating with respect to time and using V. B = 0 gives (see the Appendix) 

a*B, 1 
F= -~ (B, . V)* V*B, 

(Wci7A)2 
(7) 

This fourth-order operator guides the choice of the semi-implicit operator for 
eliminating numerical instabilities associated with the Hall term. 
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The procedure for developing a semi-implicit time advance is identical to that 
used in the semi-implicit MHD method, except that the semi-implicit treatment is 
on the magnetic field advance rather than the velocity advance [2,3,5]. The 
operator on the right side of Eq. (7) is used with a vector coefficient, to be 
determined from stability considerations, as an approximation to the effect of the 
Hall term in the second-order differential equation. This operator is then added to 
each side of the induction advance. Consider the case with no pressure, no 
resistivity, and advection neglected in the momentum equation. In order to 
eliminate the CFL constraint due to the Alfvtn waves, the velocity equation is 
treated semi-implicitly and, for simplicity, the operator is chosen to be the 
Laplacian. Using a leapfrog time discretization with semi-implicit terms for both the 
AlfvCn [7] and Hall terms, one may use either a single-step semi-implicit advance 
of the induction equation or one using operator splitting. 

2.1. Single-Step Method 

Applying the form of the operator in Eq. (7) with constant semi-implicit coeffi- 
cients directly to the induction equation gives the leapfrog advance 

B “+‘+(dt)2(C,,V)2V2B”+1 

=B”+ (At)* (C,V)‘V’B” 

+AtVx y”+1/2xB”+1/* 
( 

1 
J"+ l/2 x B"+ l/2 , 

ocizAP > 
(8) 

v”+ ’ - (At)2Cf, V*v”+’ 

=v”- (At)2 C; V’v”+ (At/p) Jn+1’2 xB”+“*. (9) 

C, and C, are the Alfvtn and Hall semi-implicit parameters, respectively. The 
above algorithm is second-order accurate in time and has no dissipation. Dissi- 
pation may be added if it is desired. To analyze the stability of this algorithm, 
consider a linearlized problem in one dimension (a/ax = 0, a/ay = 0) with a uniform 
equilibrium magnetic field, B0 = B,z and a uniform density. Assuming that all 
quantities vary as e”“” + kZz), we obtain 

SAvx= Atk,B,B,, 

S,v,= Atk,B,B,, 

S,B,=Atk,(v,+i$$-) B,, 

S,B,=Atk,(v,-iz) B,,, 

(11) 

(12) 

(13) 
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where we have defined S, = 1 + (At)* C: kz and S,= 1 + (At)2 Cikz. C, has been 
chosen so that C, = C,z. After some algebra the following dispersion relation is 
obtained, 

(14) 

where X= (At)“kiB$S,S, and Y= (At)* kfB$(S HO,itA)*. For stability the right 
side of Eq. (14) must be less than or equal to one. In the limit W,irA + cc (i.e., no 
Hall term) we have Y= 0 and we can choose CH = 0, for which Eq. (14) gives 
stability for X< 4. For unconditional stability, we require (At)2 klBg( 1 + (At)2 
Ci kz) < 4. This is satisfied for all k, if C, > 1 B,1/2. This is just the usual condition 
for stability in the semi-implicit MHD method. The other limit, with wcirA + 0, so 
that X4 Y (i.e., the Hall term dominates), gives stability for Y< 4. For uncondi- 
tional stability this requires that 

(At)’ kZBi(micrA)-’ 
1 + 2(At)* C;k; + (Ac)~ Cj!,k,p 

< 4 
’ (15) 

In order to satisfy this condition for all’ k, it is necessary to have C, > 
(1/4)IB,j/(o,,z,). These criteria on C, and C, are not sufficient for stability at 
intermediate values of wcirA. Numerical solutions of the dispersion relation (14 
show that numerical stability can be achieved at all values of O,iZA if C, > lB,l/ 2, 

and CH>(lP $)IBol/(Oci~A). 
$ 

Th ese enhanced values of the semi-implicit 
coefficients are required to stabilize modes with very large k,; if these high k, modes 
are not present in the calculation, correspondingly smaller values of C, and C, 
may be used. 

Another possible choice for a Hall term semi-implicit operator is simply the 
Laplacian [S]. Equation (8) becomes 

B “+‘-AtC VzB”+’ 
H 

=B”-AtCHV*B”+AtVx 

( 

y”+l/*XB”+li*_~Jn+l/*XB”+li* . 

> 
(16) 

The semi-implicit terms make this algorithm only first-order accurate in time. It is 
still, however, possible to obtain unconditional stability with this algorithm. The 
dispersion relation for the l-dimensional problem is identical to Eq. (14), except for 
the fact that now S, = 1 + AtC,kf . Unconditional stability in the limit of X -+ 0, 
therefore, requires 

(At)2 k2B~(o,iZA)~2 
1 + 2AtC,k; + (At)’ Cf,k; 

< 4. 

This condition is satisfied for all k, if C, > ~1 B,l/(o,izA). The error associated with 
this first-order scheme can be too large to make it useful. The highly dispersive 
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character of algorithms using the Laplacian for the Hall term will be shown in the 
numerical tests. 

2.2. Split Methods 

The same semi-implicit operators described in Section 2.1 may be used in a two- 
stage advance of the induction equation. In the two-stage method the advance is 
split between the MHD part and the Hall term. The advance of the magnetic field 
in Eq. (8) is replaced by 

B*=B"+A~VX(V"+~'~XB"+~'*), (18) 

B”+l +(At)*(C,, V)*V2Bn+’ 

=B*+(dt)*(CH4')*V2B*- 
At 

Vx(J"+l'*x B” + 1/2 
). (19) 

An important feature of this scheme is that the semi-implicit operator for the Hall 
term only alters the Hall contribution. It has no direct effect on the original MHD 
equations. Therefore, in the limit of the Hall term going to zero or the Hall semi- 
implicit terms becoming very large (i.e., large At), the solution to the resistive 
MHD advance without the Hall term is recovered. The dispersion relation for this 
algorithm is the same as Eq. (14), except that X= (At)* kzB$SA. In the limit of 
X-P 0, the condition for stability is identical to the single-step case, i.e., Eq. (15). 
Again, a numerical solution of the dispersion relation for the split algorithm shows 
that numerical stability is achieved at all values micrA if CA > ) B,I/> and CH > 
!IBoI/(WdA). 

The same splitting procedure may be used with the Laplacian. However, again a 
first-order accurate method is obtained that is overly dispersive. If one wanted to 
use the Laplacian, the split method is better since the semi-implicit operator will 
not destroy the original MHD solution. Nevertheless, this is not recommended 
since the proper semi-implicit operator of Eq. (19) yields superior results. 

3. NUMERICAL TESTS 

In order to examine the effects of the different semi-implicit operators for the Hall 
term, we consider the case of an axisymmetric wave in a cylinder with a uniform 
axial magnetic field, B = B,z. Conducting wall boundaries are assumed at radius 
r = u. Density is assumed to be uniform and pressure is set to zero. The dispersion 
relation for the normal modes of this system [9] (switching to physical units) is 

(oI’/w;~) = (1 - o*/k$ Vi){ 1 - a’/[ V2,(kf + vi)]}, (20) 

where v, corresponds to the zeros of the Bessel function, J,(v,a) =O. When 
(O/W,i) 6 1 the usual fast and slow modes of MHD are recovered. We choose 
(o,izA)= 3.5 in order to study the effect of the semi-implicit operators on the 
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ba 

I%. 1. Dispersion relation for the fast and slow modes with 0,~~ = 3.5. The dashed line represents 
the modes without the Hall term. 
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FIG. 2. Kinetic energy as a function of time for a fast mode with k, = 0.5. 
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FIG. 3. Kinetic energy as a function of time for a fast mode with k, = 10. 
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0 Full Operator 

lo- * Laplacian 

2" I " I I " 
0 12 3 4 5 

ha 

FIG. 4. Dispersion for the fast mode. The solid line shows the theoretical value and the points 
represent the results of single-step semi-implicit computations using the Laplacian and full operator. 

solution. This value is chosen because it corresponds roughly to the size of the Hall 
term in ZT40M reversed-field pinch experiments. Using this value, the dispersion 
relation for the fast and slow modes with the Hall term is plotted in Fig. 1. At large 
k, the fast mode behaves like o= (V:/o,i) kt and the slow mode asymptotes to 
w=o ‘. 

Usiig the single step algorithms of Eqs. (8) and (9) and initializing the first 
cylindrical eigenmode (m = 1) with vra = 3.832 (see Ref. [9]), the results of the 
semi-implicit method can be compared to the analytic dispersion relation. A time 
step of At = 0.17,. is used and the semi-implicit coefficients are set to CA = 0.55 Vv, 
and CH = 0.157 VA. The time step was chosen to correspond to a typical value for 
3-dimensional resistive MHD computations using the semi-implicit method. The 
computations were performed in a cylindrical code [S] with a spectral represen- 
tation in the axial and azimuthal directions and second order finite differences in 
the radial direction. The maximum time step for an explicit leapfrog algorithm with 
the Hall term is (At)2 < 4/[kia2(ki + kf) V:(WcirA)-2], where k, = 2/Ar, and Ar is 
the radial grid spacing. Figures 2 and 3 show the kinetic energy as a function of 
time for k,a = 0.5 and k,a = 10, respectively. Sixty-four radial gridpoints are used. 

3- 
0 Full Operator 

, 

kza 
FIG. 5. Dispersion relation for the slow mode showing the theoretical value (solid line) and results 

of single-step computations. 
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The maximum explicit time steps for these two cases would be Ar<O.ll 7A for 
kza =0.5 and At co.0055 r, for k-u= 10. These conditions become much more 
severe when azimuthal variation is allowed. This maximum, k,a = 10, is a typical 
value for the maximum k,a in a tokamak disruption calculation (kza= 10 
corresponds to the n = 20 mode in an aspect ratio 2 tokamak). The frequency com- 
puted for the k,u=OS case is o = 3.9 r;‘, which agrees with the theoretical value. 
The k,u = 10 case for the fast mode is not resolved in time, since the theoretical fre- 
quency is o = 120 r;‘. The rapid oscillation in Fig. 3 corresponds to the fast mode 
at a reduced frequency because of the large time step (At = 0.1 r,), while the slower 
oscillation is a result of the slow mode. The algorithm remains stable and there is 
no dissipation, as can be seen in Fig. 3. Figures 4 and 5 show the dispersion curves 
for the fast and slow modes. The solid line corresponds to the analytic result and 
the points represent the values obtained from the semi-implicit computations using 
the single-step algorithm for both the semi-implicit operator of Eq. (8) and the 
Laplacian operator. The algorithm using the fourth-order operator is accurate even 
at large k,u. The Laplacian has poor accuracy at all k,u. This poor accuracy is due 
both to the fact that the operator is only O(At) accurate and because it acts 
isotropically, so that even when there is no variation along B, it affects the solution. 
The more accurate semi-implicit operator of Eq. (8) behaves properly, since its 
effect vanishes for k, = 0. 

The dispersion relation for the single step semi-implicit algorithms applied to the 
cylindrical problem is, in the limit of w At < 2, 

with S, = 1 + (At)2 (kt + vi) Ci and SH = 1 + (At)2 kz(kt + vi) Cj, for the full 
operator and SH = 1 + At(kf + vi) CH for the Laplacian. These dispersion relations 
are plotted in Figs. 6 and 7 for the case of o,~z~ = 3.5 and At = 0.1 zA. These curves 

3 
5( 

kza 
FIG. 6. Numerical dispersion relation for the single-step algorithm, Eq. (21), with the full operator, 

showing the fast (upper curve) and slow (lower curve) modes. 
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FIG. 7. Numerical dispersion relation for the single-step algorithm, 
operator, showing the fast (upper curve) and slow (lower curve) modes. 

Eq. (21), with the Laplacian 

. q Full Operator 
lo- * Laplacian 

2t-----J 
0 12 3 4 5 

ha 

FIG. 8. Fast mode results, as in Fig. 4, using the split algorithm. 

4 
q Full Operator 

0 
. 

3- 
. Laplacian . 

FIG. 9. Slow mode results, as in Fig. 5, using the split algorithm. 
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FIG. 10. Numerical dispersion relation for the split algorithm, Eq. (22), with the full operator, 
showing the fast (upper curve) and slow (lower curve) modes. 

agree very well with the numerical results in Figs. 4 and 5 at low k,. A negative 
aspect of these operators is that at very large k, both drive the computed slow 
mode frequency toward zero. High k, modes that are undamped will consequently 
appear spuriously at low frequencies. Additionally, the semi-implicit terms will 
cause these modes to have a negative group velocity (%+Yc < 0) at high k,, leading 
to the propagation of information in the wrong direction. It is, therefore, necessary 
to include some dissipation at high k to prevent these errors from affecting the low 
frequency solution. This dissipation may be added as an artificial viscosity and is 
also useful to eliminate noise due to poorly resolved modes at high frequency. 

The problem of negative group velocity may be eliminated by using the split 
algorithm [Eqs. (18) and (19)]. Figures 8 and 9 show the numerical and analytic 

24 

20 

16 

r’ 

L 
0 10 20 30 40 50 

&a 

FIG. 11. Numerical dispersion relation for the split algorithm, Eq. (22), with the Laplacian operator, 
showing the fast (upper curve) and slow (lower curve) modes. 
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FIG. 12. Ratio of computed to theoretical frequency for the slow mode as a function of o,,, At, using 
the single-step algorithm for the full operator (squares) and the Laplacian (solid circles). 

results of using the split algorithm. Once again the full operator [Eq. (19)] is 
accurate even at large k,. The Laplacian performs somewhat better than it does in 
the single-step method because when the Hall term vanishes (i.e., at low k,) its 
effect disappears. The error for the Laplacian is nevertheless substantial whenever 
the Hall term is important. Unlike the single-step algorithm, the error now moves 
the dispersion relation in the direction of the ordinary MHD solution without the 
Hall term. The dispersion relation for this split algorithm is 

co2 -- ‘H (-2 k3(02-(k:+;;) “3 

0; - k;(k; + vi) vi 
(22) 

with SR and S, defined for the two operators as in Eq. (21). These dispersion 
relations are plotted in Figs. 10 and 11. Once again these curves agree with the 
above numerical results at low k,. The dispersion for the split algorithm is superior 
to the single-step algorithm because the high k modes no longer have negative 
group velocity. The split algorithm, therefore, is the optimum choice using the 
operator of Eq. (19). 

1.2, 

= 1.1 . l l l 

3’ I 
. 

p.0 1 0 0 0 
2 cl 

3 0.9 
0 

0.81 
0.0 0.1 0.2 0.3 0.4 0.5 ( 

athAt 

I.1 6 

FIG. 13. Ratio of computed to theoretical frequency for the slow mode using the split algorithm for 
the full operator (squares) and the Laplacian (solid circles). 
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The effect of varying the time step size can be seen in Figs. 12 and 13. Initializing 
the same mode as above with k,a = 2, the time step is varied from 0.001 to 0.6 rA. 
The frequency for the slow mode in this case is wzA = 1.7. Figures 12 and 13 show 
the ratio of the computed frequency to the theoretical frequency, w,,&Q,, as a 
function of w,,, At for the slow mode. The full operator is clearly superior to the 
Laplacian and, for this case, in which the Hall term is important but not dominant, 
the split algorithm is somewhat better than the single-step method. The split 
algorithm with the full operator is accurate within one percent out to o,,, At=0.4. 

The semi-implicit operators for the Hall term and the Alfvtn waves are both 
derived from equations with second derivatives with respect to time. The semi- 
implicit terms are then added to the corresponding first-order differential equations. 
For stability it is necessary to add the terms to one of the two first-order equations. 
In the semi-implicit MHD method only the momentum equation is modified and 
the magnetic field advance is still explicit. Then Hall terms are different in that they 
couple different components of the magnetic field, so it is not obvious to which 
single equation the semi-implicit terms should be applied. When the semi-implicit 
terms are applied to all components of the induction equation the algorithms 
described in Section 2 are obtained. The dispersion relation. Eq. (15) contains the 
denominator 1 + 2(At)2 CHkz + (dt)4 Cikf . All that is really necessary for stability 
is the term 2(At)* Cjf,kl in the denominator. This term would be a better operator 
at high k, because it would eliminate the extraneous term (At)4 Cj,kz. Rather than 
applying the semi-implicit technique to one component, this less dispersive 
denominator may be obtained by using the semi-implicit advance only on every 
second time step. The semi-implicit coefficient, C,, must be increased by a factor 
of 2 over the algorithm of Eqs. (8) and (9) for stability, but the resulting method 
is more efficient and less dispersive. 

As an example of a practical application of this semi-implicit treatment, we 
consider an m = 2, n = 1 tokamak tearing mode. Toroidal effects are neglected, 
the aspect ratio is R/a= 3, S= 104, B,(r) = 1 in normalized units, mcirA = 5, and 
the q profile q = 27rcrB,(r)/LB,(r), is given by q = [0.2(R/a)( 1 - 0.5r2/a2)] -‘. For 
simplicity, we have neglected the electron pressure gradient term which should 
normally be included in a tokamak computation. The inclusion of this term causes 
no additional numerical difficulties. This equilibrium is unstable to an m = 2, n = 1 
resistive tearing mode with a growth rate of y = 4.3 x 1O-3 r,‘. In order to test the 
different semi-implicit algorithms on this problem, we initialized this equilibrium in 
a spectral code retaining ten modes of a single helicity, m = 1, n = 2 to m = 10, 
n = 20. A random perturbation was then applied to this equilibrium and a time step 
of At = 0.5 rA was used. One hundred radial grid points were used. Had this been 
an explicit calculation, the time step would have been limited by the Hall term to 
At<4.0x 10-4r,. When this computation was performed with the single step 
algorithm using the Laplacian operator, the computed growth rate was much too 
high, y = 1.5 x 10m2 z; ‘, due to a distortion of the time scales for resistive modes. 
As discussed previously with regard to linear waves, the split algorithm has no 
effect on the original MHD equations, but does introduce error into the Hall con- 
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tribution at large At. When the split algorithm is applied here with the Laplacian 
operator, using At = 0.5 zA, the growth rate is found to be y = 5.7 x 10V3 r; ‘. This 
is identical to the growth rate for the MHD problem without the Hall terms 
present. The Laplacian operator had the effect of totally eliminating the Hall effect. 

When the full operator is used in the split method, Eq. (18), the solution is 
accurate even at these large time steps. The coefficients of the semi-implicit operator 
are set so that at a given radius CHe and CHr are equal to 0.6 times the maximum 
values of B, and B,, respectively, at that radius. The same computation as above 
was performed with this algorithm, again using a time step of 0.5 rA. The growth 
rate was found to be y = 4.2 x 10e3 ti ‘, giving good agreement with the true value. 
A key difference between this mode with the Hall term and the ideal mode is the 
presence of rotation. Figure 14 shows the saturated m = 2 island rotating with 
approximately the local diamagnetic drift frequency due to the Hall effect. 

It should also be noted that this algorithm only addresses the most severe time 
step constraint imposed by the Hall term. Less severe constraints also arise from the 
J .VB term in the induction equation. Therefore, once larger time steps are 
acceptable with the semi-implicit method, for some problems it may be necessary 
to consider techniques to eliminate these other constraints in order to perform the 
most efficient computations. The implementation of this algorithm, for either the 
full operator or the Laplacian, is not diflicult in a spectral code having a Fourier 

T = 2000 TA 0. 

-5 

T = 2125 TA 0. 

-5 

..s 0. .s 

T = 2250 7A 0. 

-5 

-.s 0. .s 

FIG. 14. Helical flux contours in a tokamak showing the Hall rotation of an m = 2, n = 1 island near 
saturation. 
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representation in two directions. In either case, the magnetic field advance requires 
the solution of a block tridiagonal system, which adds a negligible amount of 
additional computing time per time step when compared with an explicit advance. 
The solution becomes more complicated when two or more dimensions are in finite 
difference form. We have not addressed this situation here, but in such a case 
implementation of the full operator would be considerably more difficult than 
implementation of the Laplacian semi-implicit operator. 

4. CONCLUSIONS 

A semi-implicit technique for treating the Hall term has been developed. The 
semi-implicit operator is fourth order in k,, and second order in k,. This operator 
eliminates the restrictive stability constraints on the time step due to the Hall term. 
It is possible to use a simpler operator, such as the Laplacian. The Laplacian, 
however, is very poor in terms of accuracy when large time steps are used. The 
most successful technique is found to be a split algorithm in which the new semi- 
implicit terms affect the Hall contribution. The method is simple to implement in 
spectral models and allows time steps to be comparable to those normally used 
for semi-implicit MHD computations. This semi-implicit technique should be 
appropriate for application to the simulation of reversed-field pinches, field-reversed 
configuration plasmas, and edge regions of tokamaks, for which the Hall term is 
essential. The method should also be useful for quasineutral hybrid computations 
since the time step constraint is the same as in the fluid model described here and 
only the magnetic field equation is involved. 

APPENDIX 

The fourth-order semi-implicit operator in Eq. (7) may be derived from Eq. (6) 
by the following procedure. Starting with Eq. (6), 

aB1 -1 -=- 
at wtizA V x (J1 x B,). 

Equation (Al) is differentiated with respect to time, giving 

a*B, -1 
T= -vx[(vx~)xB,,]. 

wci7,4 

(AlI 

Equation (Al) is then substituted for the time derivative on the right side of 
Eq. 6421, 

a*B, 1 
p-=7 

(wci7A) 

Vx{Vx[Vx(J1xBo)]xBo}. 
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Using V . B = 0 and the uniformity of B,, this expression becomes 

8B, 1 
F=’ 

(“ciz.4) 

B,.V[V x (B, .VJ,)]. (A4) 

Equation (A4) can be converted to a simpler form by using the following relations 
derived from vector identities and the properties of B and J: 

B,VJ,=V(J1~B,)+B0xV2B, (A3 

and 

V x (B, x V*B,) = -(B,, .V) V*B,. (J46) 

Applying these relations to Eq. (A4) gives 

8B, 1 -= 
at* -- (B,V)*V2B1, 

t”ciz,4 )’ 
(A7) 

which is Eq. (7) of the text and defines the form of the fourth-order semi-implicit 
operator. 
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